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Received: 21 March 2002 /
Published online: 5 July 2002 – c© Springer-Verlag / Società Italiana di Fisica 2002

Abstract. We calculate the one-loop contributions to the difference ∆πK between the isoscalar on-shell
pion–kaon scattering amplitude at the Cheng–Dashen point and the scalar form factor ΓK(2M2

π) in the
framework of three flavor chiral perturbation theory. These corrections turn out to be small. This is further
sharpened by treating the kaons as heavy fields (two flavor chiral perturbation theory). We also analyze
the two-loop corrections to the kaon scalar form factor based on a dispersive technique. We find that these
corrections are smaller than in the comparable case of the scalar form factor of the pion. This is related
to the weaker final state interactions in the pion–kaon channel.

1 Introduction

In QCD, the mass terms for the three light quarks, u,
d and s, can be measured in the so-called sigma terms.
These are matrix elements of the scalar quark currents
mq q̄q in a given hadron H, 〈H|mq q̄q|H〉, with H e.g. pi-
ons, kaons or nucleons. Since no external scalar probes
are available, the determination of these matrix elements
proceeds by analyzing four-point functions, more precisely
Goldstone boson–hadron scattering amplitudes in the un-
physical region, φ(q)+H(p) → φ(q′)+H(p′) (note that the
hadron can also be a Goldstone boson). The determina-
tion of the sigma terms starts from the generic low-energy
theorem (such a low-energy theorem was first formulated
for pion–nucleon scattering [1]) for the isoscalar scattering
amplitude A(ν, t):

F 2A(t, ν) = Γ (t) + q′µqνrµν , (1.1)

where F is the Goldstone boson decay constant and Γ (t)
is the pertinent scalar form factor

Γ (t) = 〈H(p′)|mq q̄q|H(p)〉, t = (p′ − p)2, (1.2)

employing the standard Mandelstam variables s, t, u to
describe the scattering process, with s + t + u = 2M2

H +
2M2

φ, and further introducing the crossing variable ν =
s−u. At zero momentum transfer, this scalar form factor
gives the desired sigma term,

Γ (0) = 2MHσφH , (1.3)
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for appropriately normalized hadron states (note that
sometimes one uses Mφ for the normalization). Further-
more, in (1.1) rµν is the so-called remainder, which is not
determined by chiral symmetry. However, it has the same
analytical structure as the scattering amplitude. To de-
termine the sigma term, one has to work in a kinematic
region where this remainder is small, otherwise a precise
determination is not possible. Beyond tree level, the re-
gion where the remainder is small shrinks to the so-called
Cheng-Dashen (CD) point [2], which e.g. for pion scatter-
ing off other hadrons is given by

t = 2M2
π , ν = 0, (1.4)

which clearly lies outside the physical region for elastic
scattering but well inside the Lehmann ellipse. The re-
action most studied to determine a sigma term is cer-
tainly elastic pion–nucleon scattering, πN → πN , but the
best understood process is low energy pion-pion scatter-
ing ππ → ππ (for a beautiful sigma term analysis for that
case, see [3]). Much less is known for processes involv-
ing kaons, in particular for (anti)kaon–nucleon scattering,
which is of interest for particle, nuclear and astrophysics.
One of the reasons is the large kaon mass, which moves
the corresponding CD-point to t = 2M2

K , far away from
the physical region. That makes the interpolation from
the data much more difficult than in the pion case. In ad-
dition, there are open channels below threshold or even
resonances (for K̄N → K̄N). There are also less high pre-
cision scattering data. Before addressing these issues, it is
therefore mandatory to understand the simplest process
involving strange quarks, i.e. elastic pion–kaon scattering.
This reaction has attracted much recent interest (see e.g.
[4]) mostly triggered by the intended lifetime measure-
ment of πK atoms at CERN [5], but also as a theoretical
laboratory to study the question whether the kaon can be
considered as a heavy particle, see [6,7]. Therefore, as an
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intermediate step it was proposed to analyze the sigma
term in pion–kaon scattering [3]. This is done in this pa-
per in two ways. In Sect. 3 we use standard three flavor
chiral perturbation theory (CHPT) [8], treating the pions
and the kaons as (pseudo-) Goldstone bosons of the spon-
taneously broken chiral symmetry of QCD. We discuss
the one-loop representation of the scalar pion–kaon form
factor and of the isospin-even πK scattering amplitude
and deduce the size of the remainder at the CD-point.
In Sect. 4 we analyze the sigma term in the heavy-kaon
framework, which helps us to understand the results ob-
tained in SU(3) CHPT. To further analyze the stability of
our results, we calculate in Sect. 5 the two-loop corrections
to the scalar pion–kaon form factor in the threshold region.
We employ the dispersive technique of [9], despite the fact
that the technology for explicit two-loop corrections exists
(see e.g. [10]). However, for the estimate of these effects
as needed here the use of analyticity and unitarity com-
bined with chiral constraints is sufficient. We end this pa-
per with a short summary in Sect. 6. A related low-energy
theorem for soft kaons is analyzed in AppendixA. Further
technicalities and definitions are relegated to the following
appendices.

2 Basic considerations

Elastic pion–kaon scattering can be parameterized in
terms of an isospin 1/2 and an isospin 3/2 amplitude,
called T 1/2(s, t) and T 3/2(s, t), respectively, and s, t, u are
the conventional Mandelstam variables. Note that since
these are subject to the constraint s+t+u = 2M2

π+2M2
K ,

it suffices to specify two arguments, like s and t or ν and
t. Here, we are interested in the isoscalar amplitude

T+
πK(s, t) ≡ AπK(s, t) =

1
3
T 1/2(s, t) +

2
3
T 3/2(s, t). (2.1)

More precisely, this amplitude can be obtained entirely
from the isospin 3/2 amplitude because of the s ↔ u
crossing relation (for clarity, we exhibit here all three ar-
guments of the scattering amplitude),

T 1/2(s, t, u) =
3
2
T 3/2(u, t, s)− 1

2
T 3/2(s, t, u). (2.2)

Furthermore, the reaction π+(q) + K+(p) → π+(q′) +
K+(p′) defines the isospin 3/2 amplitude,

〈π+(q′)K+(p′)out|π+(q)K+(p)in〉
= i(2π)4δ(4)(p+ q − p′ − q′)T 3/2(s, t, u). (2.3)

Note also that T+ is even under s ↔ u crossing, while the
isovector amplitude T− = (T 1/2 − T 3/2)/3 is odd. The
partial wave expansion for the πK scattering amplitudes
takes the form

T I(s, t) = 32π
∞∑
l=0

(2l + 1)tIl (q)Pl(z), (2.4)

in terms of the squared momentum transfer t = −2q2(1−
z) and the cosine of the scattering angle, z = cos(θ).

The low-energy theorem, (1.1), takes the form

F 2ACD
πK = ΓK(2M2

π) +∆πK . (2.5)

with F 2 expressed in terms of the pion (Fπ) or the kaon
(FK) decay constants or the product thereof. From the
view point of the chiral expansion, all of these choices are
legitimate. This has most notable consequences for the
remainder because it affects its leading (fourth) order ex-
pression. Therefore, the fact that Fπ �= FK will play an
important role in the numerical analysis discussed below,
related to a particular chiral SU(2) breaking effect within
a three flavor calculation (as explained below). The perti-
nent scalar kaon form factor is

ΓK(t) = 〈K0(p′)|m̂(ūu+ d̄d)|K0(p)〉, m̂ =
1
2
(mu+md).

(2.6)
At t = 0 this defines the πK sigma term,

2MπσπK = ΓK(0). (2.7)

In what follows, we will analyze the size of the remainder
at the CD-point in the isospin limit mu = md = m̂ to one
loop accuracy, neglecting also electromagnetic isospin vi-
olation. To get an idea about possible higher order correc-
tions, we will also calculate the scalar form factor ΓK(t)
beyond one loop, following the approach of [9]. In Ap-
pendixA, we analyze a similar low-energy theorem taking
the kaons as soft.

3 Analysis of σπK

in SU(3) chiral perturbation theory

The tool to systematically calculate low-energy QCD
Green functions and transition currents is chiral pertur-
bation theory. This amounts to a systematic expansion
around the chiral limit in terms of two small parameters
related to the quark masses and the external momenta [8].
In the chiral limit of vanishing quark masses, pions, kaons
and etas are massless Goldstone bosons, but in nature the
quark masses are finite, in particular the strange quark is
much heavier than the light up and down quarks, which
is reflected in the difference of the expansion parameters
for two and three flavor CHPT, M2

π/(4πFπ)
2 = 0.02 and

M2
K/(4πFπ)

2 = 0.2, respectively. This large difference is
at the heart of the heavy kaon approach to be discussed
below. Here, we analyze the πK sigma term to the first
non-trivial order, i.e. to one loop accuracy in the stan-
dard scenario of a large quark condensate, based on the
one-loop representation for πK scattering given in [11]. An
analysis of πK scattering to leading order in generalized
CHPT can be found in [12]. Also needed in the analy-
sis of the remainder at the CD-point is the fourth order
representation of the πK scalar form factor, first given
explicitly in [13]. It has the form

ΓK(t) =
M2
π

2

{
1 +

1
F 2

[
Lr4(−32M2

K + 16t)
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+ Lr5(8M
2
π − 16M2

K + 4t) + Lr664M
2
K

+ Lr8(−16M2
π + 32M2

K)

− 1
2
M2
πµπ +

(
−1
6
M2
π +

2
3
M2
K

)
µη − 3

4
tJrππ(t)

− 3
4
tJrKK(t) +

(
2
9
M2
K − 1

4
t

)
Jrηη(t)

]}
+O(p6). (3.1)

Here, the JrPQ are the renormalized loop functions as de-
fined in [8] and λ is the scale of dimensional regularization.
We set λ =Mρ. We use the operator basis of [8]. Further-
more,

µP =
1

(4π)2
ln

M2
P

λ2 (P = π,K, η). (3.2)

We remark that setting F = Fπ, the fourth order con-
tribution amounts to a 22% correction to the tree level
result at the two-pion threshold, t = 4M2

π , which is fairly
small for a three flavor observable. For comparison, the
scalar form factor of the pion is affected by a 29% correc-
tion at the two-pion threshold. We will come back to this
topic in Sect. 5. It is also of interest to analyze the Taylor
expansion of ΓK(t) around t = 0,

ΓK(t) = ΓK(0)
(
1 +

1
6
〈r2

S〉Kt+O(t2)
)
, (3.3)

in terms of the scalar radius. To get a handle on the the-
oretical uncertainty, we use two sets of values for the low-
energy constants Li and their corresponding uncertainties.
Set 1 is from [14] and set 2 from [15] (more precisely, we
use the so-called central fit). We find

〈r2
S〉K =

{
(0.30± 0.23) fm2, set 1,
(0.38± 0.02) fm2, set 2.

(3.4)

Two remarks are in order. First, the central value is
smaller than the scalar pion radius, 〈r2

S〉π � 0.6 fm2, point-
ing towards smaller final state interactions. Second, the
uncertainty due to the LECs is fairly large for set 1 but
much smaller for set 2. This can be traced back to the
circumstance that in the second set, the variation in the
OZI-violating LEC L4 is set to zero, ∆L4 = 0, but it is
sizable for the first set, ∆L4 � 0.5 · 10−3. This shows that
this observable is very sensitive to this particular LEC.
The large uncertainty due to the variations in the LEC
also indicates that the chiral logarithms encoded in the
loop contribution play a less distinct role as compared to
isoscalar S-wave pion–pion interactions. We note that the
normalization of the form factor is ΓK(0) = 0.52(0.53)M2

π

for set 1 (2).
We turn to the remainder at the CD-point. To leading

order (tree level) it vanishes, as noted before. From the
explicit one-loop expressions for the scalar form factor and
for the πK scattering amplitude, it is straightforward to
deduce the expression for the remainder at the CD-point.
For completeness, we give here its explicit form using the
normalization F 2 = F 2

π , which is natural if one considers

the kaon as the heavy particle (much like a nucleon) from
which the pion scatters. We obtain1

∆CD
πK =

M4
π

F 2

[
LrCD(λ) +

∑
P=π,K,η

PP
(4π)2

ln
MP

λ

+ P1J
r
πK(M

2
K) + P2J

r
Kη(M

2
K)− P3

(4π)2

]
, (3.5)

with LrCD(λ) = 2(4Lr2(λ) +L3 − 2Lr5(λ) + 4Lr8(λ)) a com-
bination of low-energy constants. Furthermore,

Pπ = x(x− 1), PK =
1
6
(1− 2x),

Pη = 1
9
(
x2 − x− 2

)
, P1 =

1
2

(
−x2 +

3x
2

− 1
)
,

P2 =
1
9

(
1− x

4
− x2

2

)
, P3 =

1
6

(
1 +

x

2

)
, (3.6)

with x = M2
π/(2M

2
K) � 1/26. It is remarkable that no

terms ∝ M2
πM

2
K appear. This is, of course, different if one

chooses F 2 = FπFK or F 2 = F 2
K because

FK
Fπ

= 1 +
4Lr5
F 2

0
(M2

K −M2
π) + chiral logs, (3.7)

where F0 is the leading term in the quark mass expan-
sion of the Goldstone boson decay constants. This will
reflect itself in terms ∼ Lr5M

2
πM

2
K in ∆CD

πK . We refrain,
however, from giving the complete analytical formulae for
these cases here.

Our numerical results for the amplitude, the scalar
form factor and the relative size of the remainder at the
CD-point, R = ∆πK/(F 2ACD

πK), are collected in Table 1.
For the choice F = F 2

π , the remainder at the CD-point is
very small, constituting a true SU(2) result, as explained
below. Even for the choice of F 2 = FπFK , the resulting
numbers are still on the low side expected from SU(3)
breaking ∼ (MK/Λχ)2 � 0.2 (with Λχ = 4πFπ). This
observation also holds individually for the scattering am-
plitude and for the form factor at the CD-point. These
results are comparable to what is found in the analysis
of the pion sigma term [3]. If one normalizes F 2ACD

πK and
ΓπK(2M2

π) at tree level to one (for an easier comparison
with the pion case, see below), the first row of Table 1
reads

1.14 = 1.10 + 0.04 ,
F 2ACD

πK = ΓK(2M2
π) + ∆πK ,

(3.8)

astonishingly close to the tree level result. The remainder
amounts to a correction of 0.04Mπ/2 � 2.8MeV. It is
instructive to give the results for the pion case [3]

1.14 = 1.09 + 0.05
F 2
πA

CD
π = Γπ(2M2

π) + ∆π.
(3.9)

We note that the remainder is comparable to the pion–
kaon case; for the pion sigma term it amounts to a correc-
tion of about 3.5MeV.

1 Note that in terms of order p4, we always set F = Fπ. This
is legitimate to the accuracy we are working
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Table 1. Size of the remainder at the CD-point for various
choices of the meson decay constants and the low-energy con-
stants Lr

i (Mρ)

F 2 Li set F 2ACD
πK [M2

π ] ΓK(2M2
π) [M2

π ] R [%]

F 2
π 1 0.572 0.551 3.7

FπFK 1 0.679 0.551 18.9
F 2

K 1 0.785 0.551 29.8
F 2

π 2 0.600 0.587 2.2
FπFK 2 0.681 0.587 13.8
F 2

K 2 0.762 0.587 23.0

To further illustrate the situation we consider so-called
scale relations. This amounts to an expansion of both the
scalar form factor and the πK amplitude at the CD-point
in powers of Mπ and representing the occurring terms in
terms of the chiral logarithms ln(M2

P /Λ
2), P ∈ {π,K, η},

via appropriately defined scales Λi. The results are only
given for the 1/F 2

π choice of normalization. Consider first
ΓK at the CD-point. The non-logarithmic terms in the co-
efficients of M4

π respectively M2
πM

2
K , i.e. constant terms

and the contributions proportional to the LECs, are ab-
sorbed into common scales Λ1/2. The scales so defined,
Λ1/2, are unique and independent of the meson masses.
We find

ΓK(2M2
π) =

M2
π

2
(3.10)

+
M2
π

(4πF )2

[
M2
π

(
− ln

(
M2
π

Λ2
1

)
− 3

4
ln
(
M2
K

Λ2
1

)

− 1
3
ln

(
M2
η

Λ2
1

))
+

4
9
M2
K ln

(
M2
η

Λ2
2

)

+
217
720

M4
π

M2
K

+
1417
20160

M6
π

M4
K

]
+O

(
M10
π

F 2M6
K

)
,

where

Λ1 =

λ exp
[
6
25

(
(4π)2(16Lr4 + 8Lr5 − 8Lr8)− 3

8
π − 5

18

)]
= 527MeV,

Λ2 =

λ exp
[
9
8

(
(4π)2(16Lr4 + 8Lr5 − 32Lr6 − 16Lr8)− 1

9

)]
= 511MeV, (3.11)

employing the LEC values of set 1. Note that these expres-
sions are independent of the regularization scale λ since
the logarithmic scale dependence of the Li cancels the ex-
plicit factor of λ. The corresponding expression for F 2

πA
CD
πK

reads

F 2
πA

CD
πK =

M2
π

2

+
M2
π

(4πF )2

[
M2
π

(
− ln

(
M2
π

Λ̃2
1

)
− 9

8
ln
(
M2
K

Λ̃2
1

)

− 3
8
ln

(
M2
η

Λ̃2
1

))
+

4
9
M2
K ln

(
M2
η

Λ̃2
2

)
− π

2
M3
π

MK

+
M4
π

M2
K

(
−1
2
ln
(
M2
π

λ2

)
+

35
64

ln
(
M2
K

λ2

)
− 3

64
ln

(
M2
η

λ2

)

+
901
2160

− 1
36

√
2 arctan(

√
2)
)
+

7π
16

M5
π

M3
K

+
M6
π

M4
K

(
5
16

ln
(
M2
π

λ2

)
− 81

256
ln
(
M2
K

λ2

)
+

1
256

ln

(
M2
η

λ2

)

− 3181
15120

− 23
1152

√
2 arctan(

√
2)
)]

+ O
(

M10
π

F 2M6
K

)
, (3.12)

and

Λ̃1 = λ exp

[
1
5

(
(4π)2(8Lr2 + 2Lr3 + 16Lr4 + 4Lr5)

− 3
8
π − 1

18
+

4
27

√
2 arctan(

√
2)

)]
= 724MeV,

Λ̃2 = λ exp

[
9
8

(
(4π)2(16Lr4 + 8Lr5 − 32Lr6 − 16Lr8)

− 1
9

)]
= 511MeV. (3.13)

For the terms of order O(M6
π/F

2M2
K) and O(M8

π/F
2M4

K)
it is not possible to incorporate the constants in the co-
efficients into a universal scale in each of the chiral loga-
rithms, as can be traced back to their origin in the regular-
ization procedure. Chiral logarithms never appear alone;
their occurrence is, moreover, accompanied by a pole term
L. In the absence of counterterms proportional to M6

π/
(F 2M2

K) or M
8
π/(F

2M4
K), renormalizability requires the

coefficients of L to add up to zero for a given order, and
the same is therefore true for the coefficients of the loga-
rithms. It is thus impossible to allocate to each chiral log-
arithm its proportionate fraction of the non-logarithmic
contributions, and neither is it then possible to define a
common scale. For the purpose of illustrating the similar-
ity structure of the scalar form factor and of the scattering
amplitude we analyze the scales in those terms which be-
have as M4

π and M2
πM

2
K . With Λ2 and Λ̃2 close to the eta

mass it is clear that the potentially large corrections in-
volving M2

K are individually small. Since both scales are
even identical, these contributions cancel completely in
the remainder. In the case of Λ1 and Λ̃1 cancellations are
not complete, as Λ̃1 is larger than Λ1, whose value is again
not much different from the eta mass.

4 Analysis of σπK in the heavy-kaon approach

So far, we have considered the kaons and the pions on
equal footing, namely as pseudo-Goldstone bosons of the
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spontaneously broken chiral symmetry of QCD, with their
finite masses related to the non-vanishing current quark
masses. However, the fact that the kaons (and also the eta)
are much heavier than the pions might raise the question
whether a perturbative treatment in the strange quark
mass is justified. In fact, one can take a very different view
and consider only the pions as light with the kaons be-
having as heavy sources, much like a conventional matter
field in baryon CHPT. This point of view was first consid-
ered in the Skyrme model [16] and has been reformulated
in the context of heavy-kaon chiral perturbation theory
(HKCHPT) in [6] (a closely related work applying repa-
rameterization invariance instead of the reduction of rela-
tivistic amplitudes was presented in [7].). Since the kaons
appear now as matter fields, the chiral Lagrangian for the
pion–kaon interaction decomposes into a string of terms
with a fixed number of kaon fields, that is, into sectors
with n (n ≥ 0) in-coming and n out-going kaons. Here,
we consider processes with at most one kaon in the in/out
states. Obviously, the power counting has to be modified
due to the new large mass scale, MK , and as is the case
for baryons, terms with an odd number of derivatives are
allowed. For keeping the paper self-contained, we give in
AppendixB a more detailed discussion of the heavy-kaon
formulation, following essentially [6]. This approach is par-
ticularly suited to analyze chiral SU(2) theorems for three
flavor observables, and it is therefore natural to reconsider
pion–kaon scattering and the issues related to it discussed
in the previous sections2. The heavy kaon formulation can
be connected to the standard SU(3) CHPT approach by
so-called matching relations, which will be discussed in
some detail below for the case of the scalar form factor
ΓK . In general, this need not be done, but for practical
purposes it cannot be avoided; there are simply not enough
precise low-energy data to pin down the heavy kaon LECs
independently. The corresponding heavy-kaon Lagrangian
for doing this matching is displayed in AppendixC.

Let us first consider the scalar form factor of the kaon.
The calculation proceeds as in the standard case, only
we now have to consider new vertices and the loops are
entirely pionic ones. We will again work with the physical
masses and employ dimensional regularization. To one-
loop accuracy, one finds the following renormalized (finite)
representation for ΓK :

ΓK(t) =
M2
π

2

[
8

(
(Ar3 + 2Ar4)

×
(

− 1
2M2

π

+ 2Cr5 + 4Cr6 +
1
F 2 l

r
3

)
− 4Cr13

− 4Cr14 − 8Cr15 − 1
8(4πF )2

Ar2M
2
K

)
M2
π

+
(
2Cr5 + 4Cr6 +

1
(4πF )2

Ar2
6
M2
K

)
t

2 Note that the general derivation of the πK scattering am-
plitude was already done in [6]

+
1
F 2

(
8Ar3 + 16Ar4 + 3Ar1 +

Ar2
2
M2
K

)
M2
πµπ

+
1
F 2

(
(3Ar1 +Ar2M

2
K + 6Ar3 + 12Ar4)M

2
π

+
(

−3
2
Ar1 − 1

4
Ar2M

2
K

)
t

)
Jrππ(t)

]
+O(p6). (4.1)

In this and in all following formulae, one has F = Fπ.
To provide HKCHPT with predictive power we need the
numerical values of the renormalized LECs characteristic
of the heavy-kaon theory, more specifically the Ari and
Cri appearing in (4.1). In principle, these can be obtained
from experimental data, in complete analogy to the deter-
mination of the Li in conventional SU(3) CHPT. In fact,
one can translate knowledge of the Li into the heavy-kaon
theory and thus infer information about the HKCHPT
parameters. The major difference in both approaches is
the treatment of the strange quark mass. While in SU(3)
CHPT ms serves as an expansion parameter of the chiral
series, in the heavy-kaon approach ms does enter as part
of the static kaon mass; yet, when involved in loops, the
kaon is rather dealt with as a heavy quark, i.e. its effects
are absorbed into the numerical values of the constants
present in any expansion. Having calculated an observ-
able quantity in both schemes, a comparison of the two
power series then yields an expansion of certain combi-
nations of HKCHPT parameters in powers of ms, where
the SU(3) CHPT LECs are incorporated into the coeffi-
cients. One can thus carry out an order by order investiga-
tion as to the role which the strange quark mass plays for
the heavy-kaon constants, and as for their dependence on
the renormalization scale. This procedure is referred to as
matching. The matching relations of a sufficient number
of observables then provide enough relations among the
parameters to solve for each of them separately. We now
return to the scalar form factor of the kaon. For the match-
ing procedure, we have to bring ΓK from (3.1) into a form
which allows for a direct comparison with its heavy-kaon
counterpart, (4.1). We rewrite the form factor in terms
of M̄K (see AppendixB for definition of this and related
quantities) and expand in powers of the light quark mass
m̂ and the squared momentum transfer t. Using (B.11),
we find

ΓK(t) =
M2
π

2

+
M2
π

2F 2

[
M̄2
K

(
− 32Lr4 − 16Lr5 + 64Lr6 + 32Lr8

+
2
9

1
(4π)2

+
8
9

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))

+ M2
π

(
−16Lr4 + 32Lr6 +

1
3

1
(4π)2

+
5
18

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
− 1

2
M2
πµπ
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+ t

(
16Lr4 + 4Lr5 − 37

36
1

(4π)2

− 3
4

1
(4π)2

ln
(
M̄2
K

λ2

)
− 1

4
1

(4π)2
ln
(
4
3
M̄2
K

λ2

))

− 3
4

t

F 2 J
r
ππ(t))

]
. (4.2)

We then equate the coefficients of the various terms in
(4.2) with the ones in (4.1) and arrive at the desired
matching relations:

−4Ar3 − 8Ar4 − 1

=
M̄2
K

F 2

(
−32Lr4 − 16Lr5 + 64Lr6 + 32Lr8 +

2
9

1
(4π)2

+
8
9

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
+O(M̄4

K), (4.3)

16Ar3C
r
5 + 32Ar3C

r
6 + 32Ar4C

r
5 + 64Ar4C

r
6 +

8
F 2A

r
3l
r
3

+
16
F 2A

r
4l
r
3 − 32Cr13 − 32Cr14 − 64Cr15 − 1

F 2

1
(4π)2

Ar2M
2
K

=
1
F 2

(
−16Lr4 + 32Lr6 +

1
3

1
(4π)2

+
5
18

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
+O(M̄2

K), (4.4)

8Ar3 + 16Ar4 + 3Ar1 +
Ar2
2
M2
K = −1

2
+O(M̄2

K), (4.5)

2Cr5 + 4Cr6 +
1
Λ2
χ

Ar2
6
M2
K

=
1
F 2

(
16Lr4 + 4Lr5 − 37

36
1

(4π)2
− 3

4
1

(4π)2
ln
(
M̄2
K

λ2

)

− 1
4

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
+O(M̄4

K), (4.6)

−3
2
Ar1 − 1

4
Ar2M

2
K = −3

4
+O(M̄2

K), (4.7)

6Ar3 + 12Ar4 + 3Ar1 +Ar2M
2
K = O(M̄2

K). (4.8)

These conditions, except one, have previously been ob-
tained [6] (note that we have corrected for some obvious
misprints in that paper). Equation (4.6) provides new in-
formation, whose source is essentially the t-dependence of
ΓK . To the accuracy we are working we can neglect the
term proportional to the kaon mass, such that the essen-
tial information from matching the scalar form factor of
the kaon is given by the following equation:

Cr5 + 2Cr6

=
1
F 2

(
8Lr4 + 2Lr5 − 37

72
1

(4π)2
− 3

8
1

(4π)2
ln
(
M̄2
K

λ2

)

− 1
8

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
+O(M̄2

K). (4.9)

This can, in turn, be used to isolate Cr13+Cr14+2Cr15 from
(4.4) with the following result:

Table 2. Values of some combinations of HKCHPT LECs for
various choices of the SU(3) CHPT LECs Lr

i (Mρ). The first
eight entries are derived from matching the πK scattering am-
plitude (some of these are also found in the analysis of the
scalar kaon form factor as explained in the text). The next
two stem from the momentum dependence of ΓK(t). The large
variation for these two can be traced back to the rather differ-
ent input values for some of the OZI-violating LECs in sets 1
and 2, respectively. The last two are particular combinations of
dimension three LECs which can be obtained from the former
relations

set 1 set 2

Ar
1 0.68 0.52

Ar
3 + 2Ar

4 −0.26 −0.28
Ar

2 [GeV−2] −6.35 −4.68
Br

1 [GeV−2] 0.93 0.56
Br

3 [GeV−2] 0.83 0.68
Cr

1 [GeV−2] −1.96 −0.74
Cr

5 + 2Cr
6 + 4Cr

7 + 2Cr
8 + 4Cr

9 [GeV−2] −2.03 −2.03
8(Cr

13 + Cr
14 + 2Cr

15 + Cr
16) + Cr

8

+2Cr
9 [GeV−2] −0.84 −1.07

Cr
5 + 2Cr

6 [GeV−2] −0.02 0.15
Cr

13 + Cr
14 + 2Cr

15 [GeV−2] −0.001−0.03

2Cr
7 + Cr

8 + 2Cr
9 [GeV−2] −1.01 −1.09

8Cr
16 + Cr

8 + 2Cr
9 [GeV−2] −0.83 −0.82

Cr13 + Cr14 + 2Cr15

=
1
F 2

(
−2Lr6 − 1

2
Lr8 +

1
18

1
(4π)2

+
3
64

1
(4π)2

ln
(
M̄2
K

λ2

)

+
5
576

1
(4π)2

ln
(
4
3
M̄2
K

λ2

))
+O(M̄2

K). (4.10)

As we did in the preceding section, we handle the the-
oretical uncertainties by working with two sets of values
for the SU(3) CHPT LECs. The results are displayed in
Table 2. They reflect the LECs of the heavy-kaon theory
for a certain renormalization scale, which is inherited from
the standard LECs used in the calculation, i.e. λ = Mρ.
We note that while the dimension two heavy LEC combi-
nation is well determined, there is a large variation in the
dimension four heavy-kaon LEC combinations for the two
sets of Li. This is interesting because to a certain extent it
reflects the dependence on the OZI-violating LECs Lr4 and
Lr6. Employing these matching conditions, the scalar form
factor can be studied numerically. First, we find that the
normalization ΓK(0) increases as compared to the stan-
dard SU(3) CHPT case, ΓK(0) = 0.56(0.61)M2

π for set 1
(2) (see also the discussion below). Second, as a conse-
quence of that, the corresponding radius shrinks a bit,

〈r2
S〉K = 0.23(0.26) fm2, set 1(2); (4.11)

compare (3.4). We refrain from repeating the analysis of
the theoretical error due to the uncertainty in the heavy-
kaon LECs since this would only reflect the uncertainty of
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the Lri already discussed in the preceding section. At first,
the closeness of the values for the scalar radius using sets
1 or 2 seems puzzling since in the polynomial part of (4.1)
the term linear in t is multiplied by Cr5 + 2Cr6 , which is
very different for the two sets. However, these LECs are
very small and furthermore, this effect is to a large portion
cancelled by the contribution from the term ∼ Ar1J

r
ππ(t).

Next, we consider the πK amplitude and the remain-
der at the CD-point. First, we note that the heavy-kaon
scattering amplitude has been first evaluated and analyzed
in [6]. However, the amplitude given in that paper is not
free of errors; therefore, we give the corrected form in Ap-
pendixD. With that result, the reported discrepancy [6]
between the chiral prediction for some of the threshold
parameters in the relativistic and the heavy-kaon scheme
disappears. We have also rederived the matching relations
from the amplitude, which mostly agree with the ones in
[6]. In two relations, we found a discrepancy; the corrected
formulae are displayed in AppendixD. The numerical re-
sults are collected in Table 2. Putting pieces together, we
arrive at the remainder at the CD-point,

∆πK = M4
π

(
− Ar2

4
− 4(Ar3 + 2Ar4)(C

r
5 + 2Cr6)

+ 4Cr7 − 16Cr16

)
. (4.12)

Note that all non-polynomial pieces have disappeared.
This is consistent with the previous finding because for
the choice F 2 = F 2

π in the standard scenario we had no
contribution from pure pion loops ∼ Jrππ and the loga-
rithmic terms lnMπ in the light-kaon case (see (3.5)) only
appear at higher orders in the heavy-kaon power count-
ing. Employing the matching relations, we can analyze the
LET, (2.5), and find (again normalizing the tree result to
one)

1.22(1.27) = 1.18(1.26) + 0.048(0.014),
F 2ACD

πK = ΓK(2M2
π) + ∆πK ,

(4.13)

which means that the relative size of the remainder is
3.9% (1.6%) for set 1 (2). This is similar to the results
in standard SU(3) CHPT for the choice F 2 = F 2

π . We
also note that the normalization of the form factor ΓK(0)
has somewhat increased in the heavy-kaon approach. This
is due to the value of Ar3 + 2Ar4 which via the matching
condition subsumes some higher order corrections. A sim-
ilar statement can be made for the pion–kaon amplitude.
At first sight, this might appear worrisome but it can be
traced back to our treatment of the matching conditions,
on which we imposed a strict power counting in M̄K . It
would of course also be allowed to include such higher or-
der terms in the matching conditions. This would lead to a
reduction of the apparent discrepancy between the heavy-
kaon and the standard formulation. However, our inten-
tion in using the heavy-kaon formulation was not to repro-
duce exactly the numbers obtained in the standard case
but rather to consider the same observables in a scheme

ba

Fig. 1a,b. Dominant loop contributions to the scalar form
factor. a In the pion–nucleon case, this stems from the so-called
triangle graph. Solid (dashed) lines denote nucleons (pions).
b In the pion–kaon case, one has a tadpole-like contribution
and others. Here, the dashed lines denote Goldstone bosons

which treats the kaons very differently. Furthermore, these
small isoscalar observables are also subject to the largest
theoretical uncertainties, a situation similar to the case of
pion–nucleon scattering. However, it is also important to
discuss the difference to the pion–nucleon scattering am-
plitude. So far, we have stressed the similiarity between
πK and πN scattering, but there are some differences due
to the absence of three-Goldstone-boson couplings. In the
context discussed here, this has a major influence on the
momentum dependence of the scalar form factor respec-
tively on the t-dependence of the scattering amplitude. In
the pion–nucleon case, the very strong momentum depen-
dence around t = 4M2

π is due to the fact that the so-called
triangle diagram (see Fig. 1a) has a singularity on the sec-
ond Riemann sheet at tc = 4M2

π −M4
π/m

2 = 3.98M2
π , i.e.

very close to the threshold. In fact, in the heavy fermion
limit, this singularity coalesces with the threshold and
thus distorts the analytical structure. Such an effect can
also be seen in the spectral functions of the isovector nu-
cleon form factors. Quite differently, the t-dependence for
the pion–kaon case is given by loop graphs (as shown in
Fig. 1b) and contact terms that do not have such close-by
singularities. We end this section by remarking that one
may also try to fix the heavy-kaon LECs Ari , B

r
i and Cri

directly from a systematic analysis of low-energy data in-
volving kaons. Given however the scarcity of precise data
for processes with a conserved kaon number, we refrain
from performing such an analysis here.

5 Two-loop representation of ΓK

In Sect. 3 we have discussed the one-loop representation of
the scalar form factor ΓK of the kaon in the framework of
SU(3) CHPT. Numerically, the fourth order contributions
were found to be about 10% at the CD-point t = 2M2

π

and 22% at the two-pion threshold s = 4M2
π . We have

also shown that the small correction to the LET (2.5) was
due to the suppression of terms proportional to powers of
the kaon mass when the field normalization ∼ 1/F 2

π was
chosen. Still, in view of possible large higher order correc-
tions in the S-wave isospin zero channel and the expected
slow convergence behavior of three flavor chiral pertur-
bation theory, it is mandatory to estimate the two-loop
contributions. Because two-loop diagrams are awkward to
calculate, we seek to obtain information concerning con-



266 M. Frink et al.: Analysis of the pion–kaon sigma term and related topics

tributions of sixth chiral order at lower cost by follow-
ing a different strategy, which is based on the unitarity
properties of the scattering operator and on the analytic-
ity properties of the perturbation series representing ΓK .
We follow essentially the work of [9] on the dispersive re-
presentation of the pion form factors. We do not perform
a very precise determination of the occurring subtraction
constants. For our purpose, however, this procedure is of
sufficient accuracy.

The form factor ΓK can be represented by means of
an n-fold subtracted dispersion relation, which, restricted
to the real axis below respectively above the upper rim of
the two-pion cut beyond threshold, reads

ΓK(s+ iε) =
n−1∑
i=0

ais
i +

sn

π

∫ ∞

4M2
π

ds′

s′n
Im(ΓK(s′ + iε))

s′ − s− iε
,

ε → 0+, (5.1)

where the ai are subtraction constants, whose number n is
dictated by the convergence behavior of ΓK at infinity, and
the s+ iε notation indicates that, for s > 4M2

π , we evalu-
ate ΓK at the upper edge of the branch cut. From quark
counting rules, one expects the real (imaginary) part of
ΓK to fall off as 1/s (1/s2). The central object in the dis-
persion relation (5.1) is the absorptive part, which can
expressed via

ImΓK(s) =
i
2

∑
n

〈K+(p3),K+(p1)in|T †|inn〉〈n in|T J |0〉,
(5.2)

where the summation extends over the complete set of
intermediate states |n〉〈n|, i.e. including all sorts of multi-
particle states with appropriate quantum numbers to sat-
isfy the pertinent conservation laws3. Furthermore, J =
m̂(ūu+ d̄d) is the scalar–isoscalar source (current) under
consideration, and we have made use of the T -operator,
which is the non-trivial part of the S-operator transform-
ing a state |in〉 from the Fock space of incoming states into
an outgoing state |out〉, S|in〉 = (1 + iT )|in〉 = |out〉. The
second term on the right-hand side of (5.2) is nothing but
the complex conjugate of that scalar form factor describ-
ing the coupling of the source J to the particles of the
intermediate state labeled n, while the first term is essen-
tially the amplitude associated with two-kaon scattering
into this particular intermediate state. We have thus reex-
pressed the imaginary part of ΓK in terms of various form
factors and scattering amplitudes. In an order by order
analysis it follows that the lowest order imaginary part
of the scalar form factor is of order O(p4), since on the
right-hand side of (5.2) there are two quantities of at least
second chiral order. More generally speaking, ImΓK to any
order d in the energy expansion is related to ReΓK to or-
der d−2. ImΓK to order d is completely determined by the
Lagrangian terms up to order d − 2 via (5.2). Therefore,
once its imaginary part to order d is known, we can, within

3 Note that from here on we label the incoming momenta
as p1 and p3 and the out-going ones as p2 and p4, see also
AppendixE

the analyticity domain, recover the order O(pd) contribu-
tion of ΓK up to a number of subtraction constants by
invoking the analyticity properties of its perturbative ex-
pansion. To leading order in the chiral expansion, we have
to consider two-particle intermediate states in (5.2). It is
well established from phenomenology that four particle
(pion) intermediate states only play a role for energies
above about 1.3GeV and will thus be neglected in what
follows. For the case under consideration, the following
isospin zero states made from two equal Goldstone bosons
must be considered,

π+π− + π−π+ − π0π0 = −
√
3|0, 0〉,

K+K− −K−K+ − K0K0 +K0K0 = 2
√
2|0, 0〉,

ηη = |0, 0〉. (5.3)

Performing furthermore the S-wave projection of the cor-
responding KK → ππ,KK, ηη scattering amplitudes
(since we are dealing with a scalar source), the imaginary
part of ΓK at sixth chiral order can finally be written as

ImΓ
(6)
K (s) = −

√
3
2

(
t
0,(2)
0,KK→ππReΓ

(4)
π

+ Re
(
t
0,(4)
0,KK→ππ

)
Γ (2)
π

)
Σπ(s)Θ(s− 4M2

π)

+ 2
(
t
0,(2)
0,KK→KKReΓ

(4)
K

+ Re
(
t
0,(4)
0,KK→KK

)
Γ

(2)
K

)
ΣK(s)Θ(s− 4M2

K)

+
1√
2

(
t
0,(2)
0,KK→ηηReΓ

(4)
η (5.4)

+ Re
(
t
0,(4)
0,KK→ηη

)
Γ (2)
η

)
Ση(s)Θ(s− 4M2

η ),

where we have generalized our definitions of the (non-
strange) scalar form factors according to

〈Φa(p3), Φb(p1)out|J |0〉 = δabΓa(s). (5.5)

For a ∈ {4, 5, 6, 7}, (5.5) coincides with the earlier defini-
tion of ΓK . The scalar form factor Γπ of the pion corre-
sponds to a ∈ {1, 2, 3}, where there is no need to distin-
guish these three cases in the isospin symmetric case. The
scalar form factor Γη of the eta results from the choice
a = 8, when mixing of Φ3 and Φ8 is neglected. The su-
perscripts (n)(n = 2, 4) refer to the chiral order, that is
to tree level (2) and one-loop accuracy (4). Furthermore,
Σa(s) = (1−4M2

a/s)
1/2 and t00 denotes the corresponding

l = 0, I = 0 scattering amplitudes. A graphic illustration
of this formula in provided by Fig. 2.

From this formula, the ingredients necessary for the
calculation of ImΓK can be read off: Besides ΓK , we need
the scalar form factors of the pion and of the eta to one-
loop order, furthermore the S-wave projections of the
isospin zero amplitudes T 0

KK→ππ, T
0
KK→KK , and T

0
KK→ηη

to O(p4). All these quantities are listed in AppendixE.
Note that for calculating the imaginary part of ΓK given
in (5.4) we need theKK → ππ scattering amplitude in the
unphysical region s ∈ [4M2

π , 4M
2
K ]. The amplitude can be
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Fig. 2a–c. Imaginary part of ΓK . The × denotes the coupling
to the scalar–isoscalar source

reconstructed in this regime by means of an Omnès rep-
resentation, as treated in detail in [17]. We refer to that
paper for all details and simply apply the same procedure.

In what follows, we chose to work with a triple sub-
tracted dispersion relation for the scalar kaon form factor
ΓK(s). Therefore, the normalization, the radius and the
curvature terms appear in the polynomial part of the dis-
persive representation, which allows for the most trans-
parent way of fixing the various subtraction constants
(LECs). We thus have

Γ
(4+6)
K (s+ iε) = P (s) +

s3

π

∫ ∞

4M2
π

ds′

s′3
ImΓ

(4+6)
K (s′ + iε)
s′ − s− iε

,

(5.6)
with the polynomial

P (s) = P4(s) + P6(s) (5.7)

=
M2
π

Λ2
χ

((
d1M

2
π +

d2M
4
π

Λ2
χ

)
+
(
f1 +

f2M
2
π

Λ2
χ

)
s+

g

Λ2
χ

s2

2

)
.

Here, the dimensionless numbers d1, f1(d2, f2, g) are com-
binations of dimension four (six) LECs. In what follows,
we will fix d1 and f1 from the normalization and radius
at one-loop accuracy and set d2 = f2 = 0 for our central
results. We will also vary the latter two within reasonable
bounds, ∆d2 = ∆f2 = ±1/(16π)2. The coupling g can
be determined from the requirement that the normalized
scalar form factor ΓK/M2

π stays finite in the chiral limit
(cl). Setting mu = md = ms = 0, we find the follow-
ing representation of the sixth order contribution to this
quantity:

Γ
(6),cl
K (s)
M2
π

=
1

(4πF )4
s2
(
(4π)2

(
2632
45

Lr1 +
3082
135

Lr2 +
8773
405

Lr3

+
70
3
Lr4 +

1012
135

Lr5 − 428
45

Lr6 − 85
27

Lr8

)

+ (4π)2
(
68
3
Lr1 +

88
9
Lr2 +

232
27

Lr3 + 12Lr4 +
7
2
Lr5

)

×
(
ln
(
M2

λ2

)
+ ln

(
λ2

−s

))

+
g

2
+ γ +

17761
12960

− 97871
25920

ln
(
M2

λ2

)
− 325

192
ln2
(
M2

λ2

)

+
661
192

ln
(
λ2

−s

)
+

325
192

ln2
(
λ2

−s

))
, (5.8)

where the constant 2γ/(4πF )4 is the part of the second
derivative of the absorptive part of the dispersive repre-
sentation of ΓK with respect to s generated by the terms
in the S-wave projected scattering amplitudes which we
could only represent in an integral form; see AppendixE.
Also, the arguments of the logarithms ∼ M2 have been
made dimensionless by the square of the renormalization
scale λ. The requirement that ΓK stays finite in the chiral
limit implies that the chiral logarithms are compensated
by corresponding terms in g:

g = gr − (4π)2
(
136
3

Lr1 +
176
9

Lr2

+
464
27

Lr3 + 24Lr4 + 7Lr5

)
ln
(
M2

λ2

)
+

97871
12960

ln
(
M2

λ2

)

+
325
96

ln2
(
M2

λ2

)
, (5.9)

where parts of γ have been reshuffled to the finite con-
stant gr. g is thus found to contain chiral logarithms and
squared chiral logarithms together with a finite part. This
structure reflects the singularity structure of g before
renormalization: In dimensional regularization, g absorbs
poles of first and of second order in 1/(d − 4), with the
related chiral logarithms restoring independence on the
renormalization scale. The scale dependence of g is given
by

∂g

∂λ
=

∂gr

∂λ
+

1
λ

(
(4π)2

(
272
3

Lr1 +
352
9

Lr2 +
928
27

Lr3

+ 48Lr4 + 14Lr5)− 97871
6480

)
, (5.10)

i.e. the derivative of the double chiral logarithm is canceled
by the contributions of the Li. Similarly, the logarithmic
scale dependence of the Li balances the scale dependence
of gr, λ∂gr/∂λ, when requiring ∂g/∂λ = 0. Equation (5.9)
allows one to estimate the coupling g. Neglecting gr, we
evaluate g for λ =Mρ. Identifying the meson massM with
the pion (eta) mass, we find g = 6.7(−5). This ambiguity
is to be contrasted with the two flavor case, where only
the pion mass can appear, and thus the corresponding
constant can be fixed unambiguously [9]. Since the chiral
pion loops are longer ranged than kaon or eta loops (and
are thus more important), it is however reasonable to set
M = Mπ also in the SU(3) case as will be done in what
follows.

The real and imaginary parts of the normalized (non-
strange) scalar kaon form factor ΓK are shown in Fig. 3.
Consider first the real part. The overall correction to the
tree level result at the two-pion threshold s = 4M2

π

amounts to 23%, with only 5% due to two-loop effects.
For larger energies, the two-loop result turns over while
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Fig. 3. Normalized scalar form factor ΓK(s)/ΓK(0). Left (right) panel: real (imaginary) part. The dotted, dashed and solid
lines represent the tree, one-loop and two-loop result, in order

the one-loop curve keeps on rising. This is similar to the
case of the pion scalar form factor [9]. The turn-over of
the two-loop curve is due to the one-loop phase passing
through 90◦ in the region of the scalar resonances. If one
varies the constants d2 and f2 as described before, the real
part is only mildly affected. Its decrease for s ≥ 10M2

π is
much steeper if we chose to setM =Mη in the determina-
tion of the constant g. However, at s = 4M2

π , this different
choice of g only reduces the two-loop correction to about
3%. The imaginary part is only non-zero at one-loop or-
der and the corrections from the two-loop graphs are more
sizable in the threshold region as shown in the right panel
of Fig. 3. This is very similar to the case of the scalar pion
form factor studied in [9]. Note also that the final state
interactions are weaker in the pion–kaon system than in
the pion case (as signalled e.g. by the mass of the dynam-
ically generated light scalar mesons in the two channels,
see e.g. [18]). We stress again the difference to the case
of pion–nucleon scattering. There, the momentum depen-
dence is much stronger (for the reasons discussed in the
previous section), despite the apparent similarity to the
case of pion–kaon scattering considered in this work.

6 Summary

To summarize, we have considered aspects related to
scalar form factors and pion–kaon scattering in chiral per-
turbation theory. More precisely, the pertinent results of
this investigation can be summarized as follows.

(1) We have analyzed the low-energy theorem (2.5) for
pion–kaon scattering. The remainder at the Cheng-Dashen
point turns out to be much smaller than expected from
naive dimensional analysis in three flavor chiral perturba-
tion theory. In particular, setting the meson decay con-

stant F = Fπ, the remainder is comparable to the one in
pion–pion scattering [3].
(2) We have shown that the result for the remainder can
be understood in terms of approximate scale relations by
representing the one-loop corrections to the scalar kaon
form factor and the πK scattering amplitude in terms
of chiral logarithms with appropriate scales Λi and Λ̃i,
i = 1, 2. These scales are found to be close to the eta mass,
thus suppressing the potentially large chiral logarithms
multiplying the kaon mass squared.
(3) We have repeated the analysis in the heavy-kaon
framework, in which the kaons are treated as matter fields.
Matching conditions allow one to fix the new low-energy
constants from the ones based on the standard chiral ex-
pansion with light kaons. We have performed this match-
ing procedure for the scalar kaon form factor and the πK
scattering amplitude. This analysis confirms the finding in
the standard approach. Since a heavy-kaon cannot decay,
no ambiguity arises as to the choice of the meson decay
constant.
(4) Since the pion scalar form factor is subject to large
two-loop corrections already close to threshold, we have
calculated these also for the scalar kaon form factor using
a dispersive representation [9]. The pertinent subtraction
constants are fixed from the one-loop representation of
this form factor and the condition that it is well defined
in the chiral limit. The resulting two-loop corrections for
the real part are fairly small at low energies, while they
are more pronounced for the imaginary part. We have also
discussed the dependence of the scalar kaon radius on the
OZI-violating low-energy constant L4.
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Appendix
A Low-energy kaon relations

In very much the same manner in which we have analyzed
the isospin-even πK amplitude in the regime of low pion
momenta, we can also consider the limit of vanishing kaon
momenta. To be specific, we consider again the reaction
K+(p1)+π+(p3) → K+(p2)+π+(p4), but now in the soft-
kaon limit of vanishing kaon four-momenta. The resulting
low-energy theorem for the on-shell amplitude reads

T+
πK→πK(ν = 0, t = 2M2

K)

≡ ÃCD
πK =

1
F 2 Γ̃π+(2M2

K) +O(M4
K), (A.1)

where the strange form factor of the pion, Γ̃π, is defined
as follows:

Γ̃π(t) = 〈π+(p4)|12(m̂+ms)(ūu+ s̄s)|π+(p3)〉, (A.2)

with t = (p3 − p4)2. The analogue of the CD-point is
now the kinematic configuration ν = 0, t = 2M2

K far off
the physical region of elastic scattering. That makes the
experimental determination of Γ̃π more involved than in
the case of ΓK since data have to be extrapolated further
beyond the physical domain. The one-loop calculation of
Γ̃π is straightforward and leads to

Γ̃π+(t) =
M2
K

2
+

M2
K

2F 2

[
Lr4(−32M2

π + 16t)

+ Lr5(−16M2
π + 8M2

K + 4t) + Lr664M
2
π

+ Lr8(32M
2
π − 16M2

K)

+
1
2
M2
πµπ +

(
1
6
M2
π − 2

3
M2
K

)
µη +

(
1
2
M2
π − t

)
Jrππ(t)

− 3
4
tJrKK(t)− 5

18
M2
πJ

r
ηη(t)

]
+O(p6). (A.3)

Note that the OZI-violating coupling L4 contributes sig-
nificantly to the form factor for four-momenta of the order
t � M2

K , but is suppressed in the low-energy region much
as the other OZI-violating LEC, L6, as it only appears
with a prefactor ∼ M2

π . The first moment of the low mo-
mentum expansion of this form factor is given in terms of
the pertinent strange pion radius,

〈r̃2
S〉π =

{
(0.41± 0.22) fm2, set 1,
(0.49± 0.02) fm2, set 2.

(A.4)

whose central value is smaller than the corresponding non-
strange radius of about 0.6 fm2. This pattern is to be ex-
pected since the strange quark is more massive than the
light quarks and thus leads to smaller scales in coordinate
space. Concerning the theoretical uncertainty, the same
remarks as after (3.4) apply here. In analogy with our
previous considerations, we examine the validity of the
low-energy theorem (2.5) in terms of the remainder ∆̃πK :

F 2ÃCD
πK = Γ̃π(2M2

K) + ∆̃πK . (A.5)

Table 3. Low-momentum kaon theorem. Size of the remainder
∆̃πK for various choices of the meson decay constants and the
low-energy constants Lr

i (Mρ)

F 2 Li set F 2ÃCD
πK [M2

K ] Γ̃π(2M2
K) [M2

K ] ∆̃πK [M2
K ] R [%]

F 2
π 1 0.779 + 0.510i 0.825 + 0.510i −0.046 4.9

FπFK 1 0.886 + 0.510i 0.825 + 0.510i 0.061 6.0
F 2

K 1 0.993 + 0.510i 0.825 + 0.510i 0.168 15.1
F 2

π 2 0.813 + 0.510i 0.917 + 0.510i −0.104 10.8
FπFK 2 0.894 + 0.510i 0.917 + 0.510i −0.021 2.2
F 2

K 2 0.975 + 0.510i 0.917 + 0.510i 0.058 5.3

Since we are now working above the two-pion threshold
t = 4M2

π , we will generally have to deal with imaginary
contributions. As it turns out, these cancel exactly in
the low-momentum kaon relation, such that ∆̃πK is real.
The numerical results for the amplitude and for Γ̃π at
ν = 0, t = 2M2

K are displayed in units of M2
K in Table 3,

together with the remainder in units of M2
K and its rela-

tive size R, defined as the ratio of |∆̃πK | and the complex
modulus of the amplitude at ν = 0, t = 2M2

K . R is given
in %.

The situation is somewhat different compared to the
previous case. For the LECs from set 1, the best agree-
ment is given for the normalization 1/F 2

π , where the rel-
ative deviation amounts to about 5%. The situation is
different when working with the LECs from set 2, where
the decay constant combination 1/FπFK accounts for the
smallest remainder of about 2% relative size. Both of these
values for R are larger than the corresponding values in
the low-energy pion case, as is expected due to the larger
kaon mass. Also, the dependence on the choice of decay
constant is less pronounced. We note, however, that the
deviations from the LET are fairly small for all choices
of F 2 and are well below the typical SU(3) corrections
M2
K/Λ

2
χ � 0.2.

B Basics
of heavy-kaon chiral perturbation theory

The basic concepts of heavy-kaon CHPT (HKCHPT) are
adopted from heavy baryon CHPT, as introduced in [19]
to include baryon fields into the framework of chiral per-
turbation theory. Since baryon masses are comparable to
the chiral symmetry breaking scale and are non-vanishing
in the chiral limit, they cannot be considered light. As
a consequence hard momenta enter into the theory and
the standard power counting scheme breaks down. This is
because arbitrarily complicated diagrams no longer yield
contributions of a fixed chiral order, but contributions of
any lower order are now possible if only a sufficient num-
ber of momenta is provided by derivatives acting on the
heavy fields. Heavy baryon CHPT therefore treats baryons
essentially as static in an extreme non-relativistic frame-
work with small residual (that is, soft) momenta. In the
standard approach, see e.g. [20], a baryon field B(x) is
rewritten in the form
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B(x) = e−imv·xb(x), (B.1)

wherem is the baryon mass and vµ a four-velocity obeying
v2 = 1. The field b has only small residual momentum
which can be treated on an equal footing with the other
generically small momenta and masses, p. Using (B.1) for
the heavy fields, one can perform an expansion in powers
of 1/m. The result is a Lagrangian which generally breaks
Lorentz invariance and gives rise to a modified propagator
with additional new vertices suppressed by powers of 1/m.
These can be included in a power counting scheme where
contributions are organized in terms of both powers of
p/Λχ and of p/m. Since Λχ and m are of the same order
of magnitude, it is not necessary to differentiate between
these various types of contributions.

In a similar way, consider now the kaon to be a heavy
particle on the pionic mass scale, and apply a similar
scheme to pion–kaon reactions. As before, the heavy mass
scale (now the kaon mass) has to be eliminated to al-
low for a consistent power counting (if one uses conven-
tional dimensional regularization). We will closely follow
the approach presented in [6], correcting for a number of
apparent misprints, and adding some new results. It is
clear that a theory which treats pions as light, relativistic
particles and kaons as heavy, non-relativistic ones cannot
respect SU(3) symmetry. The pertinent symmetry group
will therefore be SU(2)V×SU(2)A. We therefore have to
choose different representations for the pion and the kaon
fields and construct the most general Lagrangian com-
patible with the symmetries of QCD, where again chiral
symmetry plays a prominent role. Lorentz invariance will
require special attention. Since the kaon now plays the
role of any matter field in a theory with non-linearly re-
alized chiral symmetry, it is natural to apply the CCWZ
formalism [21]. For doing that, we combine the kaon fields
into a representation as isospin doublets :

K =

(
K+

K0

)
, K̃ =

(
−K0

K−

)
. (B.2)

In what follows, we will write K as a generic symbol for
any of these doublets (and call them kaon fields). The
advantage of this representation is that the compensator
field h provides a natural way to define the action of
SU(2)R×SU(2)L on the kaon fields:

K(x) → h(R,L, u(x))K(x) (B.3)

for R/L ∈SU(2)R/L and u2(x) = U(x) parameterizes the
Goldstone boson fields. Note that for pure vector transfor-
mations R = L, h simplifies to h = R = L, so that SU(2)V
is represented fundamentally on K. A striking difference
in this treatment of the Goldstone bosons is the non-linear
representation for the pion as against the linear one for the
kaon degrees of freedom. While the former allows for deal-
ing with multi-pion couplings by an expansion in powers
of the relevant fields, from the latter it immediately fol-
lows that the theory will fall into separate sectors marked
by the occurrence of a fixed number of kaons, therefore the
effective Lagrangian LHKCHPT can be written as a string
of terms:

LHKCHPT = Lπ + LπKK + LπKKKK + . . . (B.4)

While the first term describes purely pionic processes, the
second one is bilinear in the kaon field, and the third one
is quadrilinear, and so on. In this paper, we only consider
processes with one in-coming and one out-going K, i.e.
only the first two terms in this series will be of relevance.
In this framework closed kaon loops, i.e. loops formed by
internal K lines only, are prohibited, and their effects en-
ter implicitly, being absorbed into the coupling constants.
Kaon propagators do, however, show up in loops com-
posed of both π and K internal lines and thus the large
mass scale MK destroys the power counting. To remedy
this, one could proceed as outlined above, i.e. go over to
the extreme non-relativistic limit via a field transforma-
tion analogous to (B.1),

K(x) = e−iMKv·xk(x), (B.5)

and give up Lorentz invariance right on the Lagrangian
level. Diagrams are then calculated in a non-relativistic
framework, and Lorentz invariance is invoked at a later
stage to determine a number of relations among the cou-
pling constants. Indeed Roessl [6] lists the most general
Lagrangian in the fields u and k up to fourth order in
small momenta, compatible with the symmetries of QCD
except for Lorentz invariance. However, to perform cal-
culations a different approach is proposed (such a modi-
fied scheme has also been applied in calculations of heavy
baryon CHPT): one determines the manifest Lorentz in-
variant Lagrangian in terms of the fields u and K which
generates those non-relativistic ones via the relation (B.5).
Calculations are then relativistically invariant at any stage
up to the evaluation of loop integrals. Only then the heavy
particle expansion in 1/MK is performed in those inte-
grands containing heavy propagators, i.e. integrals of the
type (as a typical example, consider a loop function with
one pion and one (heavy-) kaon propagator):

JπK((p1 − p2)2) =
∫

ddk
(2π)d

i
k2 −M2

π

× 1
(p1 − p2 − k)2 −M2

K

. (B.6)

Since this expression is Lorentz invariant, one is free to
work in a frame where the incoming kaon momentum, say
p2, is of the form p2 =MKv = (MK , 0, 0, 0). Plugging this
into the integral and expanding the integrand in powers
of 1/MK then yields

JπK((p1 − p2)2) =
∫

ddk
(2π)d

i
k2 −M2

π

(B.7)

×
(

− 1
2v · (p1 − k)

1
MK

− (p1 − k)2

4[v · (p1 − k)]2
1

M2
K

+ . . .

)
,

where the ellipsis indicates higher powers in 1/MK . So one
ends up with a series of terms organized as an expansion
in p/MK , where p is a generic small CHPT scale. On a dia-
grammatic level these can be represented by absorbing the
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first contribution into a modified propagator, and treat-
ing the remaining ones as additional vertices of proper
order. We can then arrange any perturbative expansion
derived from LHKCHPT as a dual expansion in powers of
both p/Λχ and p/MK . The pertinent power counting rules
can be easily derived. Consider the amplitude A of an ar-
bitrary graph consisting of V ππn pionic vertices of order n,
V πKm pion–kaon vertices of orderm, Eπ external pion legs,
EK external kaon lines, Iπ internal pion lines, IK internal
kaon lines, and L loops. The chiral dimension ν assigned
to such a diagram is (that is, A ∼ pν)

ν =
∑
n

V ππn (n − 2) +
∑
m

V πKm (m − 1) + 2L+ 1, (B.8)

where we have used the topological identities IK =
∑
m

V πKm − 1 and Iπ + IK = L +
∑
n V

ππ
n +

∑
m V πKm − 1.

From this equation one readily deduces that in contrast
to standard SU(3) CHPT, diagrams with odd chiral di-
mensions are allowed in HKCHPT. The advantage of this
scheme over SU(3) CHPT lies in its improved convergence
properties. For energies of the order of the pion mass, the
HKCHPT expansion parameter is given by Mπ/MK ≈
0.28, thus a diagram of order d+ 2 is suppressed relative
to an order d contribution by at least a factor M2

π/M
2
K ≈

0.08. This is substantially more favorable than the cor-
responding minimal suppressing factor M2

K/Λ
2
χ ≈ 0.2 in

SU(3) CHPT. However desirable this feature may be, it is
achieved at the price of a larger number of unknown LECs
in the Lagrangian.

The difference between the heavy-kaon and the stan-
dard chiral expansion can be clearly seen in case of the
pion and the kaon masses. The pion mass takes the canon-
ical form,

M2
π =M2

0

(
1 + 2

M2
0

F 2 l
r
3 +

M2
0

32π2F 2 ln
M2

0

λ2

)
, (B.9)

with M2
0 = 2m̂B0 the leading term in the quark mass ex-

pansion of the pion mass. Of course, at next-to-leading
order, the SU(2) LEC lr3 appears [22]. The kaon mass
appears quadratically in the heavy-kaon Lagrangian and
takes the form

M2
K =M2 +M (2)M2

0 +M (4)M4
0 , (B.10)

whereM2 is the quark mass independent contribution and
the explicit form of the coefficients M (2,4) is given in [6].
Note that the first two terms in (B.10) are not renor-
malized and thus are finite. For the matching with the
relativistic formulation one has to expand M2, M (2) and
M (4) in powers of M̄2

K = msB0. Similarly, since in the
heavy-kaon theory one only has pion loops, loop functions
like e.g. JrKK and Jrηη must be expanded in inverse powers
of M̄2

K ,

JrKK(t) =
1

(4π)2

(
1 + ln

(
M̄2
K

λ2

)
+

M2
π

2M̄2
K

− t

6M̄2
K

)

+ O
(

p4

M̄4
K

)
,

Jrηη(t) =
1

(4π)2

(
1 + ln

(
4
3
M̄2
K

λ2

)
+

M2
π

4M̄2
K

− t

8M̄2
K

)

+ O
(

p4

M̄4
K

)
. (B.11)

For more details on the heavy-kaon approach, we refer to
[6,7].

C Heavy-kaon CHPT Lagrangian

First, we give the basic building blocks of the heavy-kaon
Lagrangian and the associated transformation properties
under chiral R/L ∈ SU(2)R/L:

U = u2, U → RUL†,
DµK = ∂µK + ΓµK, DµK → hDµK,

DµνU = (DµDν +DνDµ)U, DµνU → RDµνUL
†,

DµνK = (DµDν +DνDµ)K, DµνK → hDµνK,

∆µ =
1
2
u†DµUu†, ∆µ → h∆µh

†,

∆µν =
1
2
(Dµ∆ν +Dν∆µ), ∆µν → h∆µνh

†,

χ± = u†χu† ± uχ†u, χ± → hχ±h†,

with the chiral connection

Γµ =
1
2
(u†(∂µ − irµ)u+ u(∂µ − ilµ)u†), (C.1)

where rµ, lµ are external right-/left-handed currents. As
mentioned before, the general form of the Lagrangian up
to order O(p4) is

LHKχPT = L(2)
π + L(4)

π + L(1)
πKK + L(2)

πKK

+L(3)
πKK + L(4)

πKK , (C.2)

where the purely pionic sector is chosen such that it co-
incides with the standard two flavor CHPT Lagrangian.
Concerning the π–K interaction Lagrangian, it is clear
from the discussion of the difficulties related to the power
counting procedure in HKCHPT, see AppendixB, that
there is not a one-to-one correspondence of the dimen-
sions assigned to a Lagrangian term in the relativistic and
the non-relativistic framework. This means that a given
Lorentz invariant term can, via (B.5), give rise to contri-
butions of different powers in the non-relativistic formula-
tion. In Roessl’s Lagrangian, the terms are labeled accord-
ing to the leading non-relativistic contributions they lead
to. The LECs are denoted Ai, Bi, Ci, and MK,0 stands for
the lowest order kaon mass. The HKCHPT Lagrangian
thus reads

L(1)
πKK = DµK

†DµK −M2
K,0K

†K, (C.3)

L(2)
πKK = A1Tr(∆µ∆µ)K†K +A2Tr(∆µ∆ν)DµK†DνK

+ A3K
†χ+K +A4Tr(χ+)K†K, (C.4)

L(3)
πKK = B1(K†[∆νµ, ∆ν ]DµK −DµK

†[∆νµ, ∆ν ]K)
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+ B2Tr(∆µν∆ρ)(DµνK†DρK +DρK
†DµνK)

+ B3(K†[∆µ, χ−]DµK −DµK
†[∆µ, χ−]K), (C.5)

L(4)
πKK = C1Tr(∆ν∆µν)(K†DµK +DµK

†K)

+ C2Tr(∆µρ∆ν)(DµνK†DρK +DρK
†DµνK)

+ C3

(
Tr(∆µν∆ρ)(DµνK†DρK +DρK

†DµνK)

− 2(DµνK†∆µ∆νρDρK +DρK†∆νρ∆µDµνK)
)

+ C4Tr(∆µν∆ρσ)(DµνK†DρσK +DρσK
†DµνK)

+ C5(DµK†χ+D
µK −M2

KK
†χ+K)

+ C6(Tr(χ+)DµK†DµK −M2
KTr(χ+)K†K)

+ C7Tr(∆µχ−)(K†DµK +DµK
†K)

+ C8Tr(∆µ∆µ)K†χ+K

+ C9Tr(∆µ∆µ)Tr(χ+)K†K

+ C10Tr(∆µ∆ν)(DµK†χ+DνK +DνK
†χ+DµK)

+ C11Tr(∆µ∆ν)Tr(χ+)(DµK†DνK +DνK
†DµK)

+ C12DµK
†{{∆µ, ∆ν}, χ+}DνK

+ C13Tr(χ+)K†χ+K + C14Tr(χ2
+)K

†K

+ C15(Tr(χ+))2K†K + C16Tr(χ2
−)K

†K. (C.6)

From the power counting formula (B.8) it follows that
loops start contributing to amplitudes at third order. The
infinities they generate are handled in the standard way,
i.e. by renormalizing the LECs. Since L(2)

πKK only accounts
for second order tree contributions, the Ai are finite. How-
ever, for reasons of notational consistency, we write Ari in
formulae describing renormalized observables, in analogy
with Bri and Cri .

D Pion–kaon scattering amplitude
in heavy-kaon CHPT

In this appendix, we present the pion–kaon scattering am-
plitude T 3/2

πK→πK(ν, t). As noted before, it does not agree
with the one given in [6] at various places. To one-loop
accuracy, it takes the form

T
3/2
πK→πK(ν, t) = − 1

4F 2
π

ν − Ar2
16F 2

π

ν2 +
Ar1
2F 2
π

t

+ (−Ar1 − 2Ar3 − 4Ar4)
1
F 2
π

M2
π

− Cr3
16F 2

π

ν3 − Br1
4F 2
π

νt+
(
Br1
2

− 2Br3

)
1
F 2
π

νM2
π

+
1

(4π)2
1
F 4
π

(
− 1
36

νt+
1
6
νM2

π

)
− Cr4

32F 2
π

ν4

+
(

−3Br2
16

+
Cr2
16

− Cr3
4

)
1
F 2
π

ν2t+
(

−Ar2
16

+
Cr1
4

)
1
F 2
π

t2

+
(
Ar2C

r
5

8
+

Ar2C
r
6

4
− Cr10

4
− Cr11

2
− Cr12

4

)
1
F 2
π

ν2M2
π

+
(

−Ar1C
r
5 − 2Ar1C

r
6 − Cr1

2
+ Cr5

+ 2Cr6 + 2Cr7 + Cr8 + 2Cr9

)
1
F 2
π
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π

+

(
2Ar1C

r
5 + 4Ar1C

r
6 + 4Ar3C

r
5 + 8Ar3C

r
6 + 8Ar4C

r
5

+ 16Ar4C
r
6 +

4Ar3l
r
3

F 2
π

+
8Ar4l

r
3

F 2
π

− 2Cr8 − 4Cr9

− 16Cr13 − 16Cr14 − 32Cr15 − 16Cr16

)
1
F 2
π

M4
π

+
1

(4π)2
1
F 4
π

(
Ar2M

2
K

18
t2 − 13Ar2M

2
K

36
tM2

π +
Ar2M

2
K

6
M4
π

)

+
(
1
6
νM2

π +
(

− 1
8M2

K

+
Ar2
8

)
ν2M2

π

+
(

−1
2
+

Ar2M
2
K

6

)
tM2

π

+
(
1 +

3Ar1
2

− Ar2M
2
K

12
+ 4Ar3 + 8Ar4

)
M4
π

)
1
F 4
π

µπ

+
(
1
24

νt − 1
6
νM2

π +
(

−Ar1
2

− Ar2M
2
K

12

)
t2

+
(
5Ar1
4

+
3Ar2M

2
K

8
+ 2Ar3 + 4Ar4

)
tM2

π

+
(

−Ar1
2

− Ar2M
2
K

6
−Ar3 − 2Ar4

)
M4
π

)
1
F 4
π

Jrππ(t) (D.1)

+
(

− 1
32MK

ν2 +
(

1
64M3

K

− Ar1
64M3

K

− Ar2
64MK

)
ν3

+
1

16MK
νt

+
(

− 1
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F 4
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+
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(
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(
− 3
8MK

+
Ar3
2MK

+
Ar4
MK

)
νM2

π

)
1
F 4
π

Jrπ(x+)

+
(

− 1
512M4

K

ν4 +
1

32M2
K

ν2M2
π

)
1
F 4
π

Grπ(x−)

+
(

− 3
512M4

K

ν4 +
3

32M2
K

ν2M2
π

)
1
F 4
π

Grπ(x+) +O(p6),

in terms of the loop integrals∫
d4k

(2π)4
i

k2 −M2
π

1
ω − v · k = 4ωL+ Jrπ(ω), (D.2)∫

d4k

(2π)4
i

k2 −M2
π

1
(ω − v · k)2 = −4L+Grπ(ω), (D.3)

with L ∼ 1/(d− 4) as usual in dimensional regularization
and x± = (ν± t)/4MK . The loop function Jrππ(t) is taken
from [8] and µπ is defined in (3.2). Note also that in [6]
matching relations were derived by comparing this ampli-
tude to the one obtained in standard SU(3) CHPT [11].
Most of these are correct; however, in two cases we have
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found an error in the terms ∼ 1/π2 in the relations for Br1
and Br3 . The corrected matching conditions read

Br1 =
1
F 2

(
− 4Lr3 − 5

576π2 − 5
108

arctan(
√
2)√

2π2

− 31
864

ln(4/3)
π2 +

1
96

ln(M̄2
K/λ

2)
π2 +O(M̄2

K)

)
, (D.4)

Br3 =
1
F 2

(
− Lr3 + Lr5 +

13
2304π2 − 1

108
arctan(

√
2)√

2π2

+
7

1728
ln(4/3)
π2 − 7

768
ln(M̄2

K/λ
2)

π2 +O(M̄2
K)

)
. (D.5)

The numerical analysis of the matching conditions derived
from the πK amplitude leads to the numbers collected in
Table 2.

E Form factors and S-wave projected
scattering amplitudes

In this appendix, we collect the one-loop representations
of the various non-strange scalar form factors and S-wave
projected scattering amplitudes appearing in (5.4). The
derivation of the scalar form factors Γπ and Γη is com-
pletely analogous to the one of ΓK . One finds

Γπ(s) =M2
π +

M2
π

F 2

[
Lr4(−16M2

π + 8s)

+ Lr5(−8M2
π + 4s) + Lr632M

2
π + Lr816M

2
π

+
(
1
2
M2
π − s

)
Jrππ(s)− 1

4
sJrKK(s)− 1

18
M2
πJ

r
ηη(s)

]

+ O(p6), (E.1)

Γη(s) =
M2
π

3
+

M2
π

F 2

[
Lr4

(
16
3
M2
π − 64

3
M2
K + 8s

)

+ Lr5

(
40
9
M2
π − 64

9
M2
K +

4
3
s

)

+ Lr6

(
−32

3
M2
π +

128
3

M2
K

)
+ Lr7

(
128
3

M2
π − 128

3
M2
K

)

+ Lr8
16
3
M2
π − 2

3
M2
πµπ +

2
3
M2
KµK

− 1
2
M2
πJ

r
ππ(s) +

(
2
3
M2
K − 3

4
s

)
JrKK(s)

+
(
7
54

M2
π − 8

27
M2
K

)
Jrηη(s)

]
+O(p6), (E.2)

in terms of the physical meson masses and we set F =
Fπ throughout. Next, we consider the various isospin zero
KK → 2 Goldstone bosons scattering amplitudes. From
these, we consider the projection on the l = 0 components
(S-waves) using (for generic Goldstone bosons Φa)

t00,ΦaΦc→ΦbΦd
(s) =

1
64π

∫ 1

−1
dzT 0

ΦaΦc→ΦbΦd
(s, t, u), (E.3)

with z = cos(θ) and the angular dependence is implicitly
contained in t and u. The pertinent Mandelstam variables
are defined by the following kinematics:

K(p1) +K(p3) → Φa(p2) + Φa(p4), (E.4)

where Φa stands for pion, kaon, or eta degrees of freedom.
The coordinate frame is chosen such that θ is the angle
included by Ap1 and Ap2. The results for the three amplitudes
pertinent to our case will now be given.

KK → ππ scattering

The Mandelstam variables for this configuration are

s = 4(Ap1
2 +M2

K), (E.5)

t = −2Ap1
2 +M2

π −M2
K + 2|Ap1|

√
Ap1

2 −M2
π +M2

Kz,

u = −2Ap1
2 +M2

π −M2
K − 2|Ap1|

√
Ap1

2 −M2
π +M2

Kz.

The I = 0, l = 0 partial amplitude is then given by the
following expression:

t00,KK→ππ(s) = − 1
64π

√
3
2{

s

F 2
π

+
1
F 4

(
Lr1(128M

2
πM

2
K − 64M2

πs− 64M2
Ks+ 32s2)
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3

M2
πM

2
K − 32

3
M2
πs− 32

3
M2
Ks+
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32
3
s2
)

+ Lr4(−128M2
πM

2
K + 32M2

πs+ 32M2
Ks)
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πs)
+ Lr6128M

2
πM

2
K + Lr864M

2
πM

2
K

+
(
1
2
M4
π − 13

6
M2
πM

2
K − 1

2
M4
K +
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(
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(
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(
4
9
M2
πM

2
K − 1

2
M2
πs

)
J̃rηη(s)
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)
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+
1√

s− 4M2
π

√
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K

× ln

(
2M2

π + 2M2
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π
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√
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(
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+
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+
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+ O(p6). (E.6)

KK → KK scattering

The Mandelstam variables for this configuration are

s = 4(Ap1
2 +M2

K), t = 2Ap1
2(z− 1), u = −2Ap1

2(z+1).
(E.7)

In this case, besides the t-channel and the u-channel loop
functions, the terms proportional to 1/t cannot be inte-
grated analytically. The I = 0, l = 0 partial amplitude is
then given by the following expression:
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112
3

s2
)

+ Lr2

(
256
3

M4
K − 176

3
M2
Ks+

64
3
s2
)

+ Lr3(64M
4
K − 56M2

Ks+ 16s2)
+ Lr4(−128M4

K + 48M2
Ks)

+ Lr5(−48M4
K + 12M2

πs) + Lr6192M
4
K + Lr896M

4
K

+
(
1
2
M2
πM

2
K − 13

6
M4
K − 3

2
M2
πs+

11
24

M2
Ks− 13

24
s2
)
µπ

+
(

−16
3
M4
K +

35
12

M2
Ks− 41

24
s2
)
µK

+
(

−1
2
M2
πM

2
K − 17

6
M4
K − 3

4
M2
πs+

45
8
M2
Ks− 3

2
s2
)
µη

− 3
8
s2J̃rππ(s)− 9

8
s2J̃rKK(s)

+
(

−8
9
M4
K + 2M2

Ks− 9
8
s2
)
J̃rηη(s) +

1
(4π)2

×
(
2M2

πM
2
K +

41
3
M4
K − 3

2
M2
πs− 107

12
M2
Ks+

43
12

s2
)

+
∫ 1

−1
dz
((

−2
3
M2
πM

4
K

t
+

2
3
M6
K

t

)
µπ

+
(
2
3
M2
πM

4
K

t
− 2

3
M6
K

t

)
µη +

(
−M2

πM
2
K +

1
2
M2
πs

− 1
8
st+

1
4
M2
πt+

1
4
M2
Kt − 5

32
t2
)
J̃rππ(t)

+
(

−2M4
K +M2

Ks− 1
4
st+M2

Kt − 1
2
t2
)
J̃rKK(t)

+
(

−2
9
M4
K +

1
2
M2
Kt − 9

32
t2
)
J̃rηη(t)
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KK → ηη scattering

The Mandelstam variables for this case are

s = 4(Ap1
2 +M2
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√
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The I = 0, l = 0 partial amplitude is then given by the
following expression:

t00,KK→ηη(s) =
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M2
Kt − 3

16
t2
)
J̃rπ,K(u)

+
(

− 1
432

M8
π

u2 − 1
36

M6
π

u
− 1

24
M4
π +

1
108

M6
πM

2
K

u2

+
7
36

M4
πM

2
K

u
− 1

72
M4
πM

4
K

u2 +
1
12

M2
πM

2
K

− 11
36

M2
πM

4
K

u
+

1
108

M2
πM

6
K

u2 − 1
432

M8
K

u2 +
5
36

M6
K

u

− 35
72

M4
K − 1

96
M4
πs

u
+

1
48

M2
πM

2
Ks

u

+
1
2
M2
Ks− 1

96
M4
Ks

u
− 3

32
s2 − 9

32
st

+
1
2
M2
Kt − 3

16
t2
)
J̃rKη(u)

))}
+O(p6). (E.10)

Throughout, we have employed the modified loop func-
tions

J̃aa(t) = Jaa(t) +
1

(4π)2
− µa, (E.11)

J̃ab(t) = Jab(t) +
1

(4π)2
+

M2
a −M2

b

2t
(µb − µa)

− 1
2
(µb + µa), (E.12)

for a, b ∈ {π,K, η}.
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